ค่าสัมบูรณ์
ค่าสัมบูรณ์ หรือ มอดุลัส หรือ modulus) ในคณิตศาสตร์ คือ ผลต่างระหว่างจำนวนนั้นกับ 0 พูดง่ายๆคือ จำนวนที่ไม่มีเครื่องหมายลบ ตัวอย่างเช่น 3 คือค่าสัมบูรณ์ของ 3 และ −3
นิยาม
นิยามได้ดังนี้: สำหรับจำนวนจริงใดๆ a, ค่าสัมบูรณ์ของ a เขียนแทนด้วย |a| เท่ากับ a ถ้า a ≥ 0 และเท่ากับ −a ถ้า a < 0 (ดูเพิ่มเติม: อสมการ) |a| จะไม่เป็นจำนวนลบ ค่าสัมบูรณ์จะเป็นจำนวนบวกหรือศูนย์เสมอ นั่นคือจะไม่มีค่า a ที่ |a| < 0
ค่าสัมบูรณ์สามารถถือว่าเป็นระยะทางของจำนวนนั้นจากศูนย์ สัญกรณ์ของระยะทางในคณิตศาสตร์มักเขียนในรูปค่าสัมบูรณ์อยู่เสมอ เมื่อจำนวนจริงถูกพิจารณาเหมือนเป็นเวกเตอร์หนึ่งมิติ ค่าสัมบูรณ์คือขนาด และ p-นอร์มสำหรับ p ใดๆ ที่ตัวประกอบคงที่ ทุกๆนอร์มใน R1 จะเท่ากับค่าสัมบูรณ์: ||x||=||1||.|x|
สมบัติ
ค่าสัมบูรณ์มีสมบัติดังนี้
-
|a| ≥ 0
-
|a| = 0 ก็ต่อเมื่อ a = 0.
-
|ab| = |a||b|
-
|a/b| = |a| / |b| (ถ้า b ≠ 0)
-
|a+b| ≤ |a| + |b| (อสมการอิงรูปสามเหลี่ยม)
-
|a−b| ≥ ||a| − |b||
-
| a | = a 2 {\displaystyle \left|a\right|={\sqrt {a^{2}}}}
-
|a| ≤ b ก็ต่อเมื่อ −b ≤ a ≤ b
-
|a| ≥ b ก็ต่อเมื่อ a ≤ −b หรือ b ≤ a
คุณสมบัติสองอันสุดท้าย ใช้ในการแก้อสมการอยู่เสมอ